10 research outputs found

    Novel piezoelectric paper based on SbSI nanowires

    Get PDF
    A novel piezoelectric paper based on antimony sulfoiodide (SbSI) nanowires is reported. The composite of tough sonochemically produced SbSI nanowires (with lateral dimensions 10–100 nm and length up to several micrometers) with very flexible cellulose leads to applicable, elastic material suitable to use in fabrication of, for example, piezoelectric nanogenerators. For mechanical energy harvesting, cellulose/SbSI nanocomposite may be used. Due to its high values of electromechanical coefficient (k33 = 0.9) and piezoelectric coefficient (d33 = 1 9 10-9 C/N), SbSI is a very attractive material for such devices. The preliminary investigations of a simple cellulose/SbSI nanogenerator for shock pressure (p = 3 MPa) and sound excitation (f = 175 Hz, Lp = 90 dB) allowed to determine its open circuit voltage 2.5 V and 24 mV, respectively. For a load resistance equal to source impedance (ZS = 2.90(11) MX), maximum output power density (PL = 41.5 nW/cm3 for 0.05-mm-thick sheet of this composite) of the cellulose/SbSI nanogenerator was observed. Cellulose/SbSI piezoelectric paper may also be useful to construct gas nanosensors and actuators

    Piezoelectric A<sup>15</sup>B<sup>16</sup>C<sup>17</sup> Compounds and Their Nanocomposites for Energy Harvesting and Sensors: A Review

    No full text
    Interest in pyroelectrics and piezoelectrics has increased worldwide on account of their unique properties. Applications based on these phenomena include piezo- and pyroelectric nanogenerators, piezoelectric sensors, and piezocatalysis. One of the most interesting materials used in this growing field are A15B16C17 nanowires, an example of which is SbSI. The latter has an electromechanical coupling coefficient of 0.8, a piezoelectric module of 2000 pC/N, and a pyroelectric coefficient of 12 × 10−3 C/m2K. In this review, we examine the production and properties of these nanowires and their composites, such as PAN/SbSI and PVDF/SbSI. The generated electrical response from 11 different structures under various excitations, such as an impact or a pressure shock, are presented. It is shown, for example, that the PVDF/SbSI and PAN/SbSI composites have well-arranged nanowires, the orientation of which greatly affects the value of its output power. The power density for all the nanogenerators based upon A15B16C17 nanowires (and their composites) are recalculated by use of the same key equation. This enables an accurate comparison of the efficiency of all the configurations. The piezo- and photocatalytic properties of SbSI nanowires are also presented; their excellent ability is shown by the high reaction kinetic rate constant (7.6 min−1)

    An Ultrasonic Fabrication Method for Epoxy Resin/SbSI Nanowire Composites, and their Application in Nanosensors and Nanogenerators

    No full text
    In this manuscript, a new fabrication technology for epoxy resin/antimony sulpho-iodide (SbSI) nanowire composites is presented. SbSI nanowires, with lateral dimensions of 10 nm to 100 nm and lengths up to several micrometres, have been synthesised using ultrasound irradiation. The prepared SbSI nanowires have been bound with epoxy resin in a mass ratio of 1:4, and then ultrasound irradiation has been used again for homogenization of the mixture. The fabricated epoxy resin/SbSI nanowire composites, due to the piezoelectric properties of SbSI (electromechanical coefficient k33 = 0.9, and piezoelectric coefficient dV = 0.9 &times; 10&minus;9 C/N) may be used as an active layer in nanosensors and nanogenerators. The preliminary investigations of epoxy resin/SbSI nanowire composites for sound excitation (frequency f = 175 Hz; L = 90 dB), vibrations (f = 24 Hz; A = 1 mm; F = 0.73 N), and shock wave (p = 6 bar), allowed for the determination of the composite&rsquo;s open circuit voltage: 0.0153 VRMS, 0.166 VRMS, and 4.51 Vp-p, respectively. Maximum power output densities of 0.45 nW/cm3 and 860 nW/cm3 have been achieved for excitation by sound and vibration, respectively, for a 0.6 mm thick layer of composite

    X-ray Diffraction and Piezoelectric Studies during Tensile Stress on Epoxy/SbSI Nanocomposite

    No full text
    In this paper, the performance of epoxy/SbSI nanocomposite under tensile stress was investigated. X-ray diffraction studies show the main stress mode has shear nature in the case of elastic deformation, while a combination of shear and tensile stress during plastic deformation caused lattice deformation of SbSI and shift of sulfur atoms along the c axis of the unit cell. Apart from that, the piezoelectric signals were recorded during tensile tests. Epoxy/SbSI nanocomposite responded to the applied tensile stress by generating a piezoelectric current with a relatively high value. The measured piezoelectric peak-to-peak current is relatively high (Ip-p = 1 pA) in comparison to the current flowing through the sample (8.16 pA) under an applied voltage of 100 V. The current level is independent of the deformation speed rate in contradistinction to complex stress states. The signal comes from the whole volume of the sample between electrodes and is generated by shear stress

    Electrical Property Analysis of Textured Ferroelectric Polycrystalline Antimony Sulfoiodide Using Complex Impedance Spectroscopy

    No full text
    Antimony sulfoiodide (SbSI) is a ferroelectric semiconductor with many interesting physical properties (optical, photoconductive, ferroelectric, piezoelectric, etc.). The electrical properties of textured polycrystalline SbSI obtained by the rapid cooling of a melted mass in liquid nitrogen are presented in this work using ac impedance spectroscopy over a wide temperature range (275–500 K) in the frequency range of 1 Hz to 100 kHz. Detailed studies of the impedance Z*(ω), conductivity σ*(ω), electric modulus M*(ω), and dielectric permittivity ε*(ω) of this material were performed using complex impedance spectroscopy for the first time. This study showed that the impedance and related parameters are strongly dependent on temperature. The internal domain structure and the presence of grain boundaries in textured polycrystalline SbSI explain the obtained results

    Contactless photomagnetoelectric investigations of 2D semiconductors

    No full text
    Background: Applications of two-dimensional (2D) materials in electronic devices require the development of appropriate measuring methods for determining their typical semiconductor parameters, i.e., mobility and carrier lifetime. Among these methods, contactless techniques and mobility extraction methods based on field-effect measurements are of great importance.Results: Here we show a contactless method for determining these parameters in 2D semiconductors that is based on the photomagnetoelectric (PME) effect (also known as the photoelectromagnetic effect). We present calculated dependences of the PME magnetic moment, evoked in 2D Corbino configuration, on the magnetic field as well as on the intensity and spatial distribution of illumination. The theoretical predictions agree with the results of the contactless investigations performed on non-suspended single-layer graphene. We use the contactless PME method for determining the dependence of carrier mobility on the concentration of electrons and holes induced by a back-gate voltage.Conclusion: The presented contactless PME method, used in Corbino geometry, is complementary to the mobility extraction methods based on field-effect measurements. It can be used for determining the mobility and diffusion length of carriers in different 2D materials
    corecore